26 research outputs found

    PDFS: Practical Data Feed Service for Smart Contracts

    Full text link
    Smart contracts are a new paradigm that emerged with the rise of the blockchain technology. They allow untrusting parties to arrange agreements. These agreements are encoded as a programming language code and deployed on a blockchain platform, where all participants execute them and maintain their state. Smart contracts are promising since they are automated and decentralized, thus limiting the involvement of third trusted parties, and can contain monetary transfers. Due to these features, many people believe that smart contracts will revolutionize the way we think of distributed applications, information sharing, financial services, and infrastructures. To release the potential of smart contracts, it is necessary to connect the contracts with the outside world, such that they can understand and use information from other infrastructures. For instance, smart contracts would greatly benefit when they have access to web content. However, there are many challenges associated with realizing such a system, and despite the existence of many proposals, no solution is secure, provides easily-parsable data, introduces small overheads, and is easy to deploy. In this paper we propose PDFS, a practical system for data feeds that combines the advantages of the previous schemes and introduces new functionalities. PDFS extends content providers by including new features for data transparency and consistency validations. This combination provides multiple benefits like content which is easy to parse and efficient authenticity verification without breaking natural trust chains. PDFS keeps content providers auditable, mitigates their malicious activities (like data modification or censorship), and allows them to create a new business model. We show how PDFS is integrated with existing web services, report on a PDFS implementation and present results from conducted case studies and experiments.Comment: Blockchain; Smart Contracts; Data Authentication; Ethereu

    Personal data broker instead of blockchain for students’ data privacy assurance

    Get PDF
    Data logs about learning activities are being recorded at a growing pace due to the adoption and evolution of educational technologies (Edtech). Data analytics has entered the field of education under the name of learning analytics. Data analytics can provide insights that can be used to enhance learning activities for educational stakeholders, as well as helping online learning applications providers to enhance their services. However, despite the goodwill in the use of Edtech, some service providers use it as a means to collect private data about the students for their own interests and benefits. This is showcased in recent cases seen in media of bad use of students’ personal information. This growth in cases is due to the recent tightening in data privacy regulations, especially in the EU. The students or their parents should be the owners of the information about them and their learning activities online. Thus they should have the right tools to control how their information is accessed and for what purposes. Currently, there is no technological solution to prevent leaks or the misuse of data about the students or their activity. It seems appropriate to try to solve it from an automation technology perspective. In this paper, we consider the use of Blockchain technologies as a possible basis for a solution to this problem. Our analysis indicates that the Blockchain is not a suitable solution. Finally, we propose a cloud-based solution with a central personal point of management that we have called Personal Data Broker.Peer ReviewedPostprint (author's final draft

    SoK: Layer-Two Blockchain Protocols

    Get PDF
    Blockchains have the potential to revolutionize markets and services. However, they currently exhibit high latencies and fail to handle transaction loads comparable to those managed by traditional financial systems. Layer-two protocols, built on top of layer-one blockchains, avoid disseminating every transaction to the whole network by exchanging authenticated transactions off-chain. Instead, they utilize the expensive and low-rate blockchain only as a recourse for disputes. The promise of layer-two protocols is to complete off-chain transactions in sub-seconds rather than minutes or hours while retaining asset security, reducing fees and allowing blockchains to scale. We systematize the evolution of layer-two protocols over the period from the inception of cryptocurrencies in 2009 until today, structuring the multifaceted body of research on layer-two transactions. Categorizing the research into payment and state channels, commit-chains and protocols for refereed delegation, we provide a comparison of the protocols and their properties. We provide a systematization of the associated synchronization and routing protocols along with their privacy and security aspects. This Systematization of Knowledge (SoK) clears the layer-two fog, highlights the potential of layer-two solutions and identifies their unsolved challenges, indicating propitious avenues of future work

    Application of tethered ruthenium catalysts to asymmetric hydrogenation of ketones, and the selective Hydrogenation of aldehydes

    Get PDF
    An improved method for the synthesis of tethered ruthenium(II) complexes of monosulfonylated diamines is described, together with their application to the hydrogenation of ketones and aldehydes. The complexes were applied directly, in their chloride form, to asymmetric ketone hydrogenation, to give products in excess of 99% ee in the best cases, using 30 bar of hydrogen at 60 °C, and to the selective reduction of aldehydes over other functional groups

    Scalable Byzantine Consensus via Hardware-assisted Secret Sharing

    No full text
    The surging interest in blockchain technology has revitalized the search for effective Byzantine consensus schemes. In particular, the blockchain community has been looking for ways to effectively integrate traditional Byzantine fault-tolerant (BFT) protocols into a blockchain consensus layer allowing various financial institutions to securely agree on the order of transactions. However, existing BFT protocols can only scale to tens of nodes due to their O(n2) message complexity. In this paper, we propose FastBFT, a fast and scalable BFT protocol. At the heart of FastBFT is a novel message aggregation technique that combines hardware-based trusted execution environments (TEEs) with lightweight secret sharing. Combining this technique with several other optimizations (i.e., optimistic execution, tree topology and failure detection), FastBFT achieves low latency and high throughput even for large scale networks. Via systematic analysis and experiments, we demonstrate that FastBFT has better scalability and performance than previous BFT protocols.Peer reviewe

    An overview of blockchain science and engineering

    No full text

    2D and 3D face localization for complex scenes

    No full text

    PoWerStore:Proofs of writing for efficient and robust storage

    No full text
    Existing Byzantine fault tolerant (BFT) storage solutions that achieve strong consistency and high availability, are costly compared to solutions that tolerate simple crashes. This cost is one of the main obstacles in deploying BFT storage in practice. In this paper, we present PoWerStore, a robust and efficient data storage protocol. PoWerStore's robustness comprises tolerating network outages, maximum number of Byzantine storage servers, any number of Byzantine readers and crash-faulty writers, and guaranteeing high availability (wait-freedom) and strong consistency (linearizability) of read/write operations. PoWerStore's efficiency stems from combining lightweight cryptography, erasure coding and metadata write-backs, where readers write-back only metadata to achieve strong consistency. Central to PoWerStore is the concept of "Proofs of Writing" (PoW), a novel data storage technique inspired by commitment schemes. PoW rely on a 2-round write procedure, in which the first round writes the actual data and the second round only serves to "prove" the occurrence of the first round. PoW enable efficient implementations of strongly consistent BFT storage through metadata write-backs and low latency reads. We implemented PoWerStore and show its improved performance when compared to existing robust storage protocols, including protocols that tolerate only crash faults. © 2013 ACM

    Thin polymeric CuO film from EPD designed for low temperature photothermal absorbers

    No full text
    International audienceThe creation of a tandem solar absorber based on highly UV–Vis–NIR absorbing nanofilm deposited onto a highly IR reflecting platinized silicon wafer is processed through electrophoretic deposition (EPD). The stabilization of a CuO colloidal aqueous suspension is first studied by adding polyethyleneimine (PEI) as cationic polymer acting both as charging agent and as electro-steric stabilizer. The colloidal stability as a function of the suspension pH is investigated prior to EPD, by Laser Doppler Velocimetry and atomic force microscopy. Tandem absorbers are obtained by varying different EPD parameters to control the thickness and the morphology of the film, in order to tune and optimize the final optical properties. The deposition thickness is then compared relative to the applied potential difference and the deposition time range. The morphology of the deposits and the thickness of the coatings are analysed by scanning electron microscopy (SEM). The density is obtained from energy-dispersive X-ray spectroscopy (EDX) using X-film software, total organic carbon (TOC) and Hamaker equation. CuO tandem absorbers are found to possess a high density with homogeneous and crack-free surfaces. Finally, absorptance (α) and emittance (ε) are calculated from the reflectance spectra of the UV–Vis–NIR and the Fourier Transform Infra-Red (FTIR) spectroscopy respectively. These latter values are combined to determine the efficiency (ƞ) of the tandem material

    Bitcoin meets strong consistency

    No full text
    The Bitcoin system only provides eventual consistency. For everyday life, the time to confirm a Bitcoin transaction is prohibitively slow. In this paper we propose a new sys-tem, built on the Bitcoin blockchain, which enables strong consistency. Our system, PeerCensus, acts as a certifica-tion authority, manages peer identities in a peer-to-peer network, and ultimately enhances Bitcoin and similar sys-tems with strong consistency. Our extensive analysis shows that PeerCensus is in a secure state with high probability. We also show how Discoin, a Bitcoin variant that decouples block creation and transaction confirmation, can be built on top of PeerCensus, enabling real-time payments. Unlike Bitcoin, once transactions in Discoin are committed, they stay committed
    corecore